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Droplet segregation in isotropic homogeneous turbulence is analysed using a spectral
direct numerical simulation solver to describe the evolution of the turbulent carrier
phase, whose characteristic properties remain statistically stationary due to a semi-
deterministic forcing scheme. Lagrangian dilute spray modelling is employed to
describe the discrete-phase evolution. The liquid density is distributed on an Eulerian
mesh to analyse the evolution of the spray and its spatial distribution. This gives results
in accordance with classical methods for droplet segregation. It also allows a deeper
analysis of the spray evolution. In particular, droplet segregation and vapour mass
fraction may be analysed jointly. First, droplet segregation phenomena are studied
through the analysis of the formation and the geometry of the droplet clusters.
Then, the effects of segregation on spray evaporation are investigated from both the
dispersed and carrier phase points of view. At equilibrium, droplet dynamics leads to
different segregation levels that are associated with characteristic Stokes numbers. It
appears that the evaporation process evolves in three different stages in time: single-
droplet mode in the early stage, cluster mode in the intermediate stage and a gaseous
mode in the late stage. Segregation levels strongly affect the evolution of the mean
vapour mixture fraction during the second stage, while the corresponding standard
deviation is affected for longer, up to the third stage in our simulations. However,
from the evolution of the integral scale and the shape of the energy spectrum, it
appears that turbulent mixing eliminates the segregation effects, apart from the first
evaporation stage when the droplet segregation determines the vapour distribution.

1. Introduction
In industrial systems involving energy transport or transformation, a combustion

chamber is generally fuelled by a spray of evaporating liquid droplets. Depending on
the chamber’s geometry, the spray injection conditions and the mixing phenomena,
various combustion regimes and flame structures may be observed, from premixed
flames to diffusion flames. However, partially premixed combustion is generally
observed because of the triple interactions between spray, turbulence and combustion.
The modelling of such chambers, involving the combustion of a two-phase flow or of
a gaseous mixture released by the evaporation of a spray, is of primary importance
in improving the output of a device and predicting pollutant formation while still
maintaining a reasonable development cost.

One of the main input parameters of any non-premixed turbulent combustion
model is the mixture fraction variable (denoted Z in this paper), which characterizes
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locally the mixing between the evaporated fuel and the gaseous oxidizer. In Reynolds-
averaged (RANS) modelling and according to the selected combustion model, the
mean mixture fraction, its variance and its dissipation rate allow the generation
of probability density functions (PDFs), (Borghi 1988) or localization in flamelet
libraries (Peters 1986). These parameters are also the basis of conditional moment
closure methods (Klimenko & Bilger 1999). Note that within the framework of
large-eddy simulations (LES), analogous data have to be determined at a subgrid
level.

Much work has been dedicated to predicting the mixture fraction evolution in purely
gaseous flows where Z is an inert scalar: the evolution of its averaged value Z is
classically established through an advection/diffusion equation, although determining
its variance Z′2 and dissipation χZ is less straightforward; see for instance Newman,
Launder & Lumley (1982), Mantel & Borghi (1994) and references therein. The
difficulties are now well understood and many closures exist. However, when two-
phase flows are considered, the mixture fraction is no longer an inert scalar: the
appearance, in the gas phase, of mass source terms due to the evaporation of the
liquid phase strongly modifies the mixture fraction field. According to the local
droplet density, Z fluctuations appear during the turbulent mixing and the local rise
of mixture fraction gradients affects the dissipation rate. The formalism of these new
source terms and their effects on the gas phase have been described in Reveillon, Bray
& Vervisch (1998), Reveillon & Vervisch (2000), Demoulin & Borghi (2002) and Colin
& Benkenida (2003) where new closures have been suggested. These models evaluate
the new source terms appearing in the transport equations for mixture fraction mean
and variance, and take into account the evaporation effects on the dissipation level
and the mixing delay.

However, while interesting data about the effects of these mass source terms have
been gathered, there is a lack of information concerning their spatial distribution.
Indeed, prior to the determination of the gas-phase turbulent mixing, dispersion of
evaporating droplets is a major phenomenon that directly affects the evolution of the
mixture fraction. Although the dispersion of particles embedded in turbulent flows
is one of the major research fields of two-phase flow, no direct link has been made
between the droplet turbulent dispersion, the mass source term distribution and the
mixture fraction evolution in a generic configuration.

The objective of this paper is to describe the simultaneous effects of turbulence on
spray dispersion and mixture fraction evolution. A direct numerical simulation (DNS)
solver is coupled with a Lagrangian model to describe the evolution of an evaporating
spray in a turbulent flow. Thus, the main characteristics of the mixture fraction field
(fluctuation intensity levels and characteristic length scales) are estimated directly
with respect to the local properties of the turbulence (r.m.s., length scales) and the
spray parameters (Stokes number, liquid equivalence ratio).

As sketched in figure 1, multiple interactions between the turbulent flow, the spray
dispersion and the vapour micro-mixing may be defined. To reduce the number
of varying parameters, a simplified configuration very close to the one used by
Eswaran & Pope (1988), for their reference study of the turbulent mixing of purely
gaseous flow, has been extended to two-phase flow simulations. Thus, forced isotropic
homogeneous turbulence, with statistically stationary properties, is used as the carrier
phase. A recently developed forcing scheme (Guichard, Reveillon & Hauguel 2004)
allowing stable mean properties of the turbulence to be obtained (energy, dissipation,
integral length scale) has been introduced in a spectral formulation describing the
evolution of the gas phase.
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Figure 1. Sketch of direct and indirect mixing due to turbulence. General objective: analysis
of spray combustion.

Over the last decade, DNS has been widely used in a large range of applications.
It was first introduced for inert flow simulations (Orszag & Patterson 1972; Rogallo
1981; Lee, Lele & Moin 1991) and has been extended to reactive flows in order to
study non-premixed, partially premixed and premixed turbulent combustion of purely
gaseous fluids (Givi 1989; Poinsot, Candel & Trouvé 1996; Vervisch & Poinsot 1998;
Poinsot & Veynante 2001; Pantano, Sarkar & Williams 2003). DNS was first extended
to two-phase flows in the pioneering work of Riley & Patterson (1974). Most of the
early numerical studies were on solid particle dispersion (see for instance: Samimy
& Lele 1991; Squires & Eaton 1991; Elgobashi & Truesdell 1992; Wang & Maxey
1993; Ling et al. 1998). Mashayek et al. (1997) conducted one of the first DNS of
evaporating droplets in turbulent flows. They neglected the effect of the spray on
the carrier phase (one-way coupling) and they assumed an incompressible flow. Since
then, DNS of two-phase flows have been extended to incorporate two-way coupling
effects and to deal with spray evaporation and combustion phenomena (Mashayek
1998; Miller & Bellan 1999, 2000; Reveillon & Vervisch 2005).

In this work, various physical processes are analysed from three-dimensional
simulations following a two-stage procedure. First, the turbulent dispersion of an
initially randomly dispersed spray is considered with non-evaporating particles. The
formation of clusters of particles is analysed (formation delay, characteristic cluster
size) in terms of their Stokes number and the properties of the turbulence. In addition
to the criterion proposed by Fessler, Kulick & Eaton (1994) to characterize the length
scale of the clusters, a new analysis is proposed to link the spray segregation with the
future mixture fraction field. Once the particles have reached a dynamical equilibrium
with the surrounding turbulent flow, evaporation phenomena are considered through
the analysis of the mixture fraction evolution. Our goal is to observe the impact of
the preferential segregation of the droplets on the mixture fraction field.

In this work, one-way coupling has been considered; with two-way coupling
(Mashayek 1998; Reveillon & Vervisch 2000, 2005), the impact of the spray on
the carrier phase modifies the turbulence characteristics and it becomes difficult to
isolate the various interactions between dispersion, evaporation and mixing. Of course,
the flow evolution considered would be more realistic, but in this paper we decided to
work on simplified configurations where the main varying parameter is the droplet’s
Stokes number, which leads to various local segregation and mixture fraction fields.
Thus, it will be possible to determine the sole impact of the spray segregation on
the mixture fraction fields that are undergoing a similar turbulent mixing. Moreover,
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it would not be logical to associate a realistic drag source term with an artificial
turbulence forcing term in the momentum equation of the gas phase.

In the following sections, the DNS configurations and the control parameters are
detailed, together with a description of the governing equations and the various
hypotheses that have been used. Then, a brief description of the statistical tools is
given and the various results are analysed in two stages: a preliminary description
of the solid-particle dispersion and a study of the effects of the evaporation of the
droplets on the mixture fraction field.

2. Governing equations and modelling
Various sets of governing equations are coupled together to carry out the

computations. Because of the forcing procedure restrictions, the gas-phase velocity is
evaluated in spectral space. The evolution of the mixture is described in physical space
so that it can be easily coupled with the Lagrangian description of the evaporating
spray.

2.1. Gas velocity and turbulence forcing

The gaseous carrier phase is isotropic homogeneous turbulence that is resolved in a
cubic domain with periodic boundary conditions. To maintain the major properties
(energy, dissipation rate, integral scale) of the spectral turbulence near to constant
values, a controlled amount of energy must be transferred into the spectral simulation
through a forcing procedure.

There are various ways to achieve the forcing of isotropic homogeneous turbulence
in a spectral DNS. First, it is possible to freeze the magnitude of the largest structures
of the spectral velocity field (Siggia & Patterson 1978; Sirovich 1991), but the
stabilization of the flow parameters requires many eddy turnover times and the results
are statistically dependent on the large anisotropic structures. Another solution is to
use stochastic schemes (Eswaran & Pope 1988), where energy is added randomly to
the low-wavenumber modes. These schemes appear to be efficient and statistically
independent, but some turbulence properties fluctuated too widely around their
prescribed values. A third way is to use a deterministic forcing scheme which forces
the lower-wavenumber modes with a controlled amount of energy. One of the most
effective such studies has been carried out by Overholt & Pope (1998). Considering
the forcing methods of Kerr (1981) and Siggia & Patterson (1978), Overholt & Pope’s
deterministic scheme forces the simulated spectrum towards a model spectrum by
using a time- and wavenumber-dependent coefficient. Recently Guichard et al. (2004)
extended this method and proposed a fully controlled deterministic forcing scheme
(FC-DFS) with a more efficient convergence rate towards the model spectrum; this
reduced the fluctuations of the prescribed properties drastically. The FC-DFS scheme
has been used in this work.

Turbulence is forced by adding a linear source term to the balance equation for the
velocity field û in wavenumber space:

∂û

∂t
= â +

fκ

τf

û, (2.1)

where â represents the classical Navier–Stokes contributions for an incompressible
flow. The forcing function fκ (κF , �κF ) is real and depends on both time t and
wavenumber magnitude κ . The principle of the model is to relax the simulated
spectrum Es towards a model spectrum Em only for a given range of low wavenumbers
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(κ < κF ). This method has been detailed and tested Guichard et al. (2004); however,
as all the simulations are based on this forcing procedure a brief description is given
in the following.

With the new source term (2.1), the time evolution of the simulated energy spectrum
Es may be written

dEs

dt
= Cκ + 2

fκ

τf

Es, (2.2)

where Cκ represents the usual energy contributions without any source term. The
objective is to ‘attract’ the simulated spectrum Es towards a model spectrum Em. This
may be done by inserting an attraction parameter directly in the equation of the time
evolution of the energy spectrum:

dEs

dt
= Cκ + Fκ

αf (t) Em(κ) − Es(κ, t)

τf

, (2.3)

where Fκ is a filter function varying from zero to unity:

Fκ =

1 − exp

(
− (κ − κf )2

�κ2

)

1 − exp

(
− κf

2

�κ2

) H (κf − κ), (2.4)

which determines the amplitude of the forcing for every wavenumber. H (x) is the
Heavyside function defined by H (x) = 1 if x > 0 and H (x) = 0 if x < 0. The filter
function allows a smooth transition between the relaxed and the non-relaxed zones;
τf is a characteristic relaxation delay of the simulated spectrum Es towards a model
spectrum Em. To keep the system stable, τf must be smaller than the smallest time
scale of the flow (Overholt & Pope 1998). The Kolmogorov time scale

τκ =

√
ν

〈ε〉 (2.5)

has thus been used with the following definition: τf = Cf τκ , where Cf is a constant
coefficient (set to 0.5 in our simulations), ν is the fluid viscosity and 〈ε〉 is the current
mean dissipation, determined over the whole spectral domain.

Note that, to maintain the simulated integral length scale in the vicinity of the
modelled one while letting the inertial range evolve freely, the cutoff (κf ) has to
be selected at the ‘beginning’ of the inertial range. By identifying equation (2.2)
with equation (2.3), the forcing function fκ may be directly defined by the following
expression:

Es(κ, t) fκ = 1
2
Fκ (αf (t) Em(κ) − Es(κ, t)). (2.6)

The coefficient αf controls the evolution of the mean turbulent energy 〈k〉 in the
spectral domain. This is achieved by assuming the following arbitrary evolution:

d 〈k〉
dt

=
k∞ − 〈k〉

τf

. (2.7)

For simplicity, it is assumed that the target value (k∞) corresponds to the energy of
the model spectrum:

k∞ =

∫
κ

Em(κ) dκ. (2.8)
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To determine αf , equation (2.7) is compared with the theoretical definition of the
mean kinetic energy, which is obtained by integrating (2.2):

d 〈k〉
dt

= −〈ε〉 +
2

τf

∫
κ

fκ Es(κ, t) dκ. (2.9)

By integrating equation (2.6) over κ and introducing relations (2.7) and (2.9), an
expression for αf may be derived:

αf (t) =

k∞ − 〈k〉 + τf 〈ε〉 +

∫
κ

Fκ Es(κ, t) dκ∫
κ

Fκ Em(κ) dκ

. (2.10)

The forcing function fk is obtained with the following equation:

fκ =
Fκ

2Es(κ, t)
(αf (t) Em(κ) − Es(κ, t)), (2.11)

which allows the simulated spectrum to be attached towards the shape of a model
spectrum and control of the mean kinetic energy.

2.2. Scalar transport

Because of the constraints of the forcing procedure, a spectral solver is used to
describe the evolution of the turbulent velocity of the flow. A one-way momentum
coupling determines the droplet motion. A two-way coupling could be used, although
there would be no point in associating it with the artificial forcing term of the
turbulence. Moreover, this one-way coupling allows us to compare the preferential
segregation of various sprays in exactly the same turbulent flow.

On the other hand, to study the evolution of the mixture fraction released by the
droplet evaporation, a two-way coupling is considered from the mass exchange point
of view. The time evolution of species mass fractions is thus considered in physical
space to simplify their coupling with the dispersed phase.

The following classical relation applies for the vapour mass fraction:

∂YF

∂t
+

∂uiYF

∂xi

= D
∂2YF

∂x2
i

+
1

ρ
ω̇v (2.12)

where D is the species diffusion coefficient and ω̇v the mass source term due to
the evaporation of the dispersed liquid phase. A similar equation without a source
term is considered for the carryier gas mass fraction: YO . The velocity components
ui are obtained from an inverse Fourier transform of the spectral velocity field:
ui = T F −1(û).

These equations are solved with the third-order Runge–Kutta procedure already
used for the spectral space. Similar sub time steps are applied for both spectral
and physical solvers. A sixth-order Pade scheme from Lele (1992) allows the spatial
derivatives to be determined. As for the spectral velocity field, periodic boundary
conditions have been used.

2.3. Liquid phase dispersion

A discrete Lagrangian approach is adopted to follow the spray evolution within the
gaseous oxidizer. By denoting the velocity and position vectors of every droplet k as
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vk and xk , the relations

dvk

dt
=

1

β
(v)
k

(u(xk, t) − vk), (2.13)

dxk

dt
= vk, (2.14)

are used to track the evolution of the spherical droplets throughout the computational
domain. The vector u represents the gas velocity at the droplet position xk . The right-
hand-side term of equation (2.13) stands for a drag force applied to the droplet, where
β

(v)
k is a kinetic relaxation time:

β
(v)
k =

a2
k

a2
0

τp

Ck

; (2.15)

ak is the diameter of the droplet k and a0 is the initial diameter of any droplet of
the initially monodispersed spray. The characteristic kinetic time τp is defined by the
relation

τp =
ρda

2
0

18µ
, (2.16)

and a corrective coefficient Ck = 1 + Re
2/3
k /6 (Crowe, Sommerfeld & Tsuji 1998) is

introduced to allow for the variation of the drag factor according to the value of the
droplet’s Reynolds number Rek = ρ|u (xk, t) − vk|ak/µ. These relations, assuming a
spherical shape, are valid in the framework of small Weber numbers. This hypothesis
is valid in all the simulations.

The evaporation of every droplet in the flow accounts for the fuel mass fraction
at the droplet surface Y s

k and the local vapour level at the droplet position, YF (xk).
Saturation conditions mainly depend on the properties of the flow at the droplet’s
surface: temperature, pressure. In our simplified configuration, a constant saturation
level such as Y s

k = Y s is considered.
The following relation may be written for the surface evolution of every droplet k:

da2
k

dt
= − a2

k

β
(a)
k

. (2.17)

A classical model (d-square law) is to consider β
(a)
k = const. It leads to a linear

relation between droplet surface and time. However, in our simulation, saturation is
accounted for and the characteristic relaxation time is defined by

β
(a)
k =

Sc

4Shc

ρd

µ

a2
k

ln((1 − YF )/(1 − Y s))
, (2.18)

where Sc = 0.7 is the Schmidt number and Shc the convective Sherwood number,
which is equal to 2 in a quiescent atmosphere; however, a correction must be applied
in a convective environment. In this context, the empirical expression of Faeth and
Fendell (Kuo 1986) has been used:

(Shc)k = 2 +
0.55RekSc

(1.232 + RekSc4/3)1/2
. (2.19)

The mean evaporation delay is controlled by selecting an appropriate value for the
saturation level Y s . Usually, the evaporation delay is defined as the time necessary for
a droplet to be vaporized, assuming that the mass fraction of vapour far from the
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Figure 2. Evolution of the ratio τ s
v /τv versus the saturation value of the mixture fraction Y s .

The dynamic delay τ s
v accounts for saturation phenomena while evaporation takes place. τv

is the classical d-square-law evaporation delay in which the surrounding vapour is not taken
into account.

droplet is constant. If this mass fraction of vapour is YF = 0, the vaporization time is

τv =
Sc

4Shc

ρd

µ

a2
0

ln(1/(1 − Y s))
. (2.20)

However, when saturation laws apply, it is possible to compute a dynamic
characteristic evaporation delay τ s

v of a droplet in a quiescent atmosphere that
takes into account the varying level of fuel vapour around the liquid. Figure 2 shows
the evolution of the ratio τ s

v /τv versus the saturation level Y s for a given initial mass
fraction of liquid Y l

0. Such an effect can be important for the evaporation of liquid
fuel since generally the saturation value is low as the temperature of the atomized
liquid is far from boiling temperature.

2.4. Coupling term

The mass source term ω̇v affects the mixture fraction evolution owing to the
distribution of the Lagrangian mass on the Eulerian grid. Every droplet has mass
source terms to be distributed over the Eulerian nodes and the organization of
an accurate projection of those Lagrangian sources to the Eulerian mesh is not
straightforward. In a real spray flow, this distribution is not instantaneous and further
assumptions are needed. In our simulations, each Lagrangian source is distributed
over Eulerian nodes directly surrounding the droplet. A finite volume approach is
applied by considering the intersection of the elementary volume centred around the
droplet and the elementary volume centred around each node (figure 3). This induces
a numerical dispersion that remains weak because of the small size of the DNS grid
and the small turbulent Reynolds number (Reveillon & Vervisch 2000).

For every Eulerian node, a control volume V is defined by the mid-distance
between the neighbour nodes. Because an isotropic Cartesian grid has been used
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Figure 3. Two dimensional Sketch of the repartition of droplet source terms on the closest
Eulerian nodes. A three-dimensional repartition is done in the simulations.

(� = xi+1 − xi = ∆x = ∆y = ∆z), the volume V is defined by V = �3. The mass
source term applied to any Eulerian node n is denoted ω̇(n)

v :

ω̇(n)
v =

1

V
∑

k

−α
(n)
k

dmk

dt
, (2.21)

where
∑

k is the sum over all the droplets affecting the node n. α
(n)
k is the distribution

coefficient of the source term of droplet k on the node n. Considering all the nodes
affected the droplet k, it is necessary to have

∑
n α

(n)
k = 1 to conserve mass, momentum

and energy during the Lagrangian/Eulerian coupling. In fact, α
(n)
k is the portion of

the control volume of node n intersecting the control volume of droplet k (figure 3):

α
(n)
k =

1

V

3∏
i=1

(
∆ −

∣∣x(n)
i − xki

∣∣), (2.22)

where x
(n)
i and xki are the coordinates along the ith direction of node n and droplet

k respectively.
The mass of droplet k in the neighbourhood of the node is defined by mk = ρdπa3

k/6
and, using equations (2.17) and (2.21), one may write

ω̇(n)
v = ρd

π

4

1

V
∑

k

α
(n)
k a3

k

/
β

(a)
k . (2.23)

3. Configurations and statistical considerations
The following three-stage procedure has been employed to analyse all the

interactions between the turbulent flow and the dispersed phase. Vorticity contours
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Figure 4. Examples of (a) vorticity contours and (b) spray dispersion.

and dispersing particles are plotted in figure 4 to illustrate both Eulerian and
Lagrangian resolutions.

Stage 1: statistically stationary turbulence

In this preliminary stage, the turbulent gaseous phase evolves alone in a 1293

Cartesian grid until its statistical properties reach a steady state thanks to the forcing
procedure that keeps the mean kinetic energy k = 3.375 m2/s−2 at the prescribed level
(figure 5(a)i). The mean dissipation rate ε is not specifically a prescribed parameter
but it must reach a steady state (ε = 2.75×104 m2/s−3), as shown in figure 5(a)(iii). The
energy spectrum allows us to determine a reference wavenumber κ0 corresponding
to turbulence scales that contain most of the kinetic energy. The corresponding
physical length l0 = 2π/κ0 is an integral scale of the flow that has been used as a
reference parameter in this work along with its spectral counterpart κ0. In all the
simulations, κ0 = 7�κ , where �κ is the spectral grid size defined by �κ = 2π/L and
L is the cubical domain dimension equal to 3 mm. The maximum energy length l0
is thus equal to L/7 and remains constant as shown in figure 5(a)(ii). The velocity
root-mean-square, u′ = 1.5 m s−1, is used as reference parameter along with the eddy
turnover time τ0 = l0/u

′ and the characteristic time τκ of the velocity fluctuations
of the smallest structures (η ≈ 1.8 × 10−5 m). The turbulent Reynolds number of
the simulation is Rel0 = 43 and the parameters of the filter function, as defined by
Guichard et al. (2004), are κF = 9 �κ and �κF = 3 �κ .

Stage 2: spray dynamical equilibrium

Several eddy turnover times after the turbulent flow reaches its stationary state,
Nd ≈ 2 150 000 mono-dispersed non-evaporating particles are randomly embedded
throughout the computational domain with a zero initial velocity. The drag force,
described above in equation (2.13), sets particles in motion. Then, the spray reaches a
dynamical equilibrium with the turbulence (figure 4b). It corresponds to a stationary
slip velocity standard deviation. Droplet dispersion is usually characterized by the
Stokes number St = τp/τκ (Wang & Maxey 1993), which indicates the ability of
droplets to capture local variations of the carrier-phase velocity. Turbulence properties
being fixed, simulations were carried out by modifying the τp parameter. By doing
so, 12 Stokes numbers varying between 0.025 and 11 were considered.

To characterize droplet dispersion and preferential concentration, a density ξ (x, t),
describing the local mass of liquid per unit of volume has been defined. To make
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Figure 5. Statistically stationary convergence of turbulence and spray properties. (a) time
evolution of the normalized; (i) kinetic energy k, (ii) maximum energy length scale l0, and (iii)
dissipation ε; (b) time evolution of particle slip velocity r.m.s. (w′′); (c) final (t > t∞) stationary
level of particle slip velocity r.m.s. (w′′

∞); (d) spray relaxation time (t∞) necessary for the spray
to be in equilibrium with the turbulent carrier phase.

the spectral analysis of physical properties easier, a Eulerian computational grid
was used and ξ (x, t) is determined by considering the droplets accumulated around
each node. A mean reference mass density is defined by ξ 0 = mdNd/L

3 where md

is the initial mass of each droplet (mono-dispersed spray). The constant parameter
ξ 0 is used to normalize the evolution of ξ (x, t). Thus, in a non-evaporating mode,
ξ (x, t)/ξ 0, which may also be considered as a number density, has a constant unity
mean ξ (t) = L−3

∫
ξ (x, t) dx = ξ 0 over the whole domain and its standard deviation

ξ ′(t) = L−3(
∫

(ξ (x, t) − ξ (t))2 dx)(1/2), normalized by ξ 0 in the following, identifies the
droplet segregation level. Note that, in the following, an ovebar stands for the mean
over the Eulerian grid whereas a tilde denotes is the mean over the Lagrangian
particles or droplets.

Stage 3: liquid phase evaporation and micro-mixing

When the droplets are evaporating, ξ/ξ 0 is bounded between 1 and 0. ξ/ξ 0 provides
information about the evaporation state whereas ξ ′/ξ characterizes the droplet
segregation. Using the parameter ξ to characterize the spray evolution and preferential
segregation is not the usual choice in other work on preferential segregation in sprays,
but it allows well-established results to be retrieved (Fessler et al. 1994). The method
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was chosen in accordance with the main objective of this paper, which is to analyse the
correlations between the droplet concentration and the micro-mixing of the gaseous
fuel released by the liquid evaporation. Using a Eulerian droplet density allows a
direct comparison with the Eulerian mixture fraction field Z. In the last stage, once
the particles have reached a dynamical equilibrium with the surrounding turbulence,
they are allowed to evaporate according to a specific characteristic evaporation delay
τv prescribed by setting the saturation level as described above. Thus, for a given
initial non-evaporating configuration, various simulations with different evaporation
delays will be carried out and analysed.

To describe the mixing between the gaseous fuel and the oxidizer, the usual
definition of the mixture fraction Z is chosen (Linán & Williams 1993; Poinsot &
Veynante 2001) leading to Z = YF in an inert flow. A passive scalar is defined as
ϕ = srYF − YO (Linán & Williams 1993), where the stoichiometric mass ratio is
sr = 11 when considering the single-step reaction C7H16 + 11O2 → 7CO2 + 8H2O .
Normalizing ϕ yields the mixture fraction Z = (Φo(YF /YF,o)− (YO/YO,o)+1)/(Φo +1),
with YF,o = 1, YO,o = 0.23 and Φo = srYF,o/YO,o, where subscript o denotes fresh gases
dilution. Note that in the case of spray evaporation, Z cannot reach unity, but a local
maximum level depending on saturation conditions. Consequently, a normalization
of Z is introduced by using the saturation limit Zs . Z/Zs is thus bounded between 0
and 1 and it is of practical interest for analysing correlations between the evaporating
spray and the turbulent mixing.

4. Results and discussion
Although homogeneous turbulence is a straightforward configuration, the addition

of an evaporating dispersed phase introduces many poorly understood interactions
between turbulence, spray, mixing and combustion. As described in the introduction,
for clarity this paper focuses on the correlations between the mixture fraction field and
the preferential droplet segregation. The analysis of flame ignition and propagation or
model closures will be the purpose of future work. In the first part of this section, the
equilibrium regimes of non-evaporating droplets before evaporation takes place are
depicted. Then evaporation is considered using both a liquid and a gas analysis. In
particular, the evolution of the mixture fraction PDF is studied. Finally, the topologies
of the liquid and vapour fields are investigated using a spectral analysis.

4.1. Liquid dispersion

The equilibrium of the spray with its surrounding carrier phase is detected through
the Lagrangian statistics of the slip velocity wk = (ut(xk, t) − vk), where u is the
gas velocity at the droplet location and v is the droplet velocity. Because of the
homogeneous nature of the turbulence and the dispersion, the mean value of the slip
velocity, defined by w̃ = N−1

d

∑Nd

k=1 wk , remains equal to zero. However, as shown in
figure 5(b), the slip velocity root mean square w′′ =

√
wiwi evolves toward a stationary

value w′′
∞ corresponding to the equilibrium of the spray with the surrounding gas.

Because particles are initially randomly distributed in the computational domain with
a zero velocity, w′′/u′ is unity at time t = 0; u′ stands for the r.m.s. of the gas velocity,
sampled with the initial field of particles. Then, as described previously, the drag
forces set the particles in motion and, depending on the Stokes number, w′′ reaches
a steady state in less than 0.1τ0 (figure 5d) for a small Stokes number (St = 0.35)
whereas 1.6τ0 is needed for the largest value of the Stokes number (St = 11). This is an
important point because, in more complex configurations like combustion chambers,



Effects of the preferential segregation of droplets 285

even though evaporation and ignition delays are short, droplets are most certainly
already in dynamical equilibrium when evaporation takes place. The final mean
stationary value of the slip velocity standard deviation, w′′

∞, is in plotted figure 5(c)
with respect to the droplet’s Stokes number. This value is zero when the droplets
are small enough to follow all the velocity fluctuations of the flow, and it increases
regularly to reach the value one asymptotically, corresponding to droplets that are
too heavy to move (St = ∞).

To study the preferential concentration of discrete particles in turbulent flows,
several approaches exist: see for instance Squires & Eaton (1991), Wang & Maxey
(1993), Fessler et al. (1994), Simonin, Fevrier & Laviéville (1993) and Aliseda et al.
(2002). If a statistically homogenously distributed spray is randomly injected, i.e.
if there is no preferential segregation, the distribution of the number of particles
per control volume (CV) of a given size must follow a binomial distribution, which
may be approximated by a Poisson distribution in our configurations. Hence, the
study of the preferential concentration is usually based (Fessler et al. 1994) on the
difference between the actual segregated distribution and the Poisson distribution. It
is characterized by

Σ = (σ −
√
λ)/λ, (4.1)

where λ is the average number of particles per cell whereas σ and
√
λ are the standard

deviations of the particle distribution and the Poisson distribution, respectively. For
a given Lagrangian distribution of the particles, Σ depends strongly on the size
of the CV considered. However, according to Fessler et al. (1994), the length scale
corresponding to the characteristic cluster size is to �Σmax , which is the size of the
CV when Σ reaches a maximum value.

In the case considered in this work, the particles are liquid droplets of fuel that are
evaporated to prepare the reactive mixture. Preferential concentrations of particles
are potentially important when describing induced heterogeneities that could appear
in the mixture fraction field. Therefore, another parameter, more representative of
the evaporation and turbulent mixing processes, has been considered to describe
preferential segregation effects.

Droplet dispersion and preferential segregation have been analysed from a Eulerian
point of view using the local Eulerian liquid density ξ (x, t). Instantaneous fields of
ξ are plotted in figure 6(b–d) for three Stokes numbers (St = 0.17, St = 1.05 and
St = 5.6) along with the corresponding vorticity field (figure 6a). These four fields
have been captured at exactly the same time after droplet dispersion has reached a
stationary value (t > t∞). Even without any quantitative analysis, it is possible to
see the dramatic impact of the particles’ inertia on their dispersion properties; even
with a small Stokes number, particles tend to leave the vortex cores and segregate
in weak vorticity areas. This phenomenon may be seen in figures 6(b) and 6(c)
where ξ is shown for St = 0.17 and St = 1.05, respectively. This last case shows a
normalized liquid density ξ/ξ 0 between 0 (no droplets) and 5 (five times the mean
density). As will be shown later, density fluctuations reach a maximum when St = 1.
When St = 0.17, segregation is already clearly visible (maximum deviation: 2.5)
although there are more intermediate-density areas (figure 6b). When the St = 1
limit is exceeded, the droplet distribution tends to be completely different than for
St � 1, see figure 6(d): kinetic times become large enough for the droplets to cross
high-vorticity areas, leading to a less segregated spray (maximum deviation: 2.5). This
result is confirmed in figure 7 where the mean liquid density conditioned by the local
vorticity level is plotted for various Stokes numbers. For highly segregated sprays
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Figure 6. (a) Carrier-phase vorticity τ0

√
ω2; spray concentration areas ξ/ξ 0 for (b)

St = 0.17, (c) St = 1.05, (d) St = 5.6.

(St = 1.05), high-vorticity areas are almost empty, with an average value of ξ/ξ 0

equal to 0.2, whereas when vorticity tends to 0, ξ/ξ 0 converges towards 2. Figure 7 is
in accordance with classical results such as the work of Squires & Eaton (1991). They
found a maximum correlation between the number of particles and the vorticity level
for a Stokes number equal to 0.15. However, they used a Stokes number based on the
integral time scale of the turbulence. On swapping it by the Kolmogorov time scale,
the peak correlation occurs for a unity Stokes number. The Kolmogorov scaling is
necessary to characterize segregation effect, as outlined by Wang & Maxey (1993).
When St = 0.17 and St = 5.6 the correlation between low-vorticity areas and high-
droplet-density clusters is less pronounced. However, because of the ballistic nature
of the heavy droplets (St = 5.6) the high-vorticity areas are still densely populated.
This confirms the qualitative result of figure 6(d).

To evaluate the preferential segregation of the droplets embedded in the turbulent
flow, ξ ′

∞ is plotted in figure 8(a). This parameter is the standard deviation of the
field ξ when droplets are in dynamical equilibrium with the carrier phase (t > t∞).
Starting from St = 0.025 with ξ ′

∞/ξ 0 = 0.55, a maximum segregation ξ ′
∞/ξ 0 = 1.4

is observed for a unity Stokes number before a progressive decay. This parameter
shows the characteristic liquid density level in clusters that have been formed by the
turbulent structures.
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The variable ξ is not classically used to capture the properties of dispersed particles;
therefore, the results have been compared in figure 8(b) with the maximum of Σ ,
which is the deviation from the Poisson distribution as defined in equation (4.1). Both
Σ and ξ ′

∞ being standard deviations of different variables, quantitative comparisons
are not relevant in this case and the data have been normalized by their maximum
value, when St = 1. The evolution of the deviation ξ ′

∞ with respect to the Stokes
number is very similar to that of the classical parameter Σ , although ξ ′

∞ is slightly
higher when St > 3. However, both curves reach a maximum value when St = 1.
Wang & Maxey (1993) and Fessler et al. (1994) have shown a similar dependence of
the segregation intensity on the Stokes number. This confirms that the parameter ξ

defined in this work is relevant to characterize segregation.
Similarly, it is possible to determine, with various methods, the characteristic size of

the clouds (or clusters) of particles. In this paper, we used the information obtained
from the energy spectrum Eξ (κ) (figure 9) of the variable ξ (x, t) when t > t∞, and
then we extracted lξ = 2π/κξ where κξ is the position, in spectral space, of the
most energetic level. Plotting the lξ dependence on the Stokes number in figure 10
demonstrates the large-scale effects of the turbulence on the spray. The cluster sizes
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computed from Eξ are compared (figure 10) with the ones obtained in the classical
Lagrangian way by Fessler et al. (1994). In that approach, the cluster size denoted
�Σmax is the width of the CV when Σ reaches a maximum value. Both lξ and
�Σmax show a similar evolution with a minimum size for St = 1. In their experiment
Aliseda et al. (2002) compared the characteristic cluster size �Σmax to the length scale
found using a method proposed by Wang & Maxey (1993). In that approach, the
change between the actual distribution and the binomial distribution is measured as
the square of the difference of probabilities given by the two distributions summed
over all possible values. Aliseda et al. found that both methods lead to the same
characteristic length scale for the cluster. Thus, using the Eulerian parameter ξ is
in accordance with the classical Lagrangian approach to the analysis of preferential
segregation. Notice that for the measurement of the characteristic cluster length scale,
Aliseda et al. (2002) used all the droplet class sizes. Thus it is not possible to determine
the Stokes number dependencey of the cluster’s characteristic length scale. The two
methods they used to find the cluster length scale agree globally when considering
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all the droplet sizes. It is still possible that some difference may appear for specific
values of Stokes as we found when comparing �Σmax to ξ .

Fessler et al. (1994) conducted experiments with various sets of particles
corresponding to Stokes numbers ranging from 1.7 up to 130. Their study does
not extend to Stokes numbers smaller than unity. It appears that �Σmax is dependent
on the Stokes number: starting with a value of the order of the Kolmogorov length
scale, it increases as the Stokes number increases. For Stokes number greater than
unity, the parameter ξ this trend recovers. In our DNS, when St < 1, the evolution
of the cluster size obtained with both Σ and ξ is similar although the length scales
are different (figure 10). However, using ξ as reference parameter offers a new range
of possible analyses, developed below.

From a phenomenological point of view, the cluster size evolution results from the
competition between three physical phenomena: the ejection of the droplets from the
vortex cores by the turbulence, the turbulent micro-mixing (prevalent when St < 1)
and the ballistic effects (prevalent when St > 1). Droplets tend to be ejected from
the turbulent structures to form clusters concentrated in low-vorticity areas. However,
for droplets with a small Stokes number, turbulent micro-mixing counteracts the
segregation process and ‘diffuse’ clouds are obtained (as seen in figure 6b): the lighter
the droplets, the more effective the mixing and the larger the characteristic size of
the cluster. When St = 1, an optimal segregation is obtained because micro-mixing is
weak and the droplets are not heavy enough to leave low-vorticity areas where they
are trapped. However, as soon as inertia is prevalent (St > 1) the particles are able to
cross turbulent structures no matter what their vorticity is and the characteristic size
of the clusters increases again. In figure 10, it is clear that both lξ and �Σmax capture
this natural dependence on the Stokes number.

To conclude on the non-evaporating dispersion aspect, our results show that
preferential segregation in sprays cannot be characterized using only the mean
segregation parameter ξ ′

∞ and the mean density ξ . For two sprays with the same
mean density and with Stokes numbers of 0.17 and 5.6, a similar mean segregation
level 0.85 is found in figure 8(a). However, the corresponding topologies of spray
density are distinct, as may be seen in figures 6(b) and 6(d) where ξ is plotted for
St = 0.17 and St = 5.6, respectively. This dramatic difference is confirmed in figure 10
by the characteristic sizes of the clusters of particles being equal to 0.29 and 0.65
when normalized by the characteristic length scale of the most energetic turbulent
structures l0. Consequently, for two fields with identical first moments of ξ , different
mixture fraction topologies can be obtained from droplet evaporation and different
combustion regimes might be observed if the ignition delay is short compared to the
turbulent mixing time. Thus, in addition to ξ and ξ ′

∞, a third parameter, which depends
on the droplet’s Stokes number, is necessary to describe accurately the preferential
segregation of the spray and the subsequent mixture fraction field.

4.2. Evaporation and turbulent mixing

Once dynamical equilibrium is reached between the turbulent gaseous flow and the
dispersed phase, evaporation is activated. Mixing between the fuel vapour and the
gaseous oxidizer is characterized by the mixture fraction Z. It is bounded between zero,
when there is no vapour, and a limit value Zs , which is the saturation level. Three cases
are chosen with three different initial Stokes numbers. They are listed in table 1: cases
B have a Stokes number close to unity when segregation is maximum, cases A and C
correspond to low and high Stokes numbers, respectively. As detailed previously, their
segregation parameter ξ ′ is the same, although the characteristic cluster size and the
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St = 0.17 St = 1.05 St = 5.6

τv = ∞ A B C
τv = 0.5τ0 A1 B1 C1

τv = τ0 A2 B2 C2

τv = 2τ0 A3 B3 C3

Table 1. Configuration labels, St is Stokes number, τv is evaporation delay.Non-evaporating
case: τv = ∞.
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Figure 11. Evolution of mixture fraction statistics in the domain, characteristic evaporation
time is 0.5τ0: (a) mean mixture fraction, (b) deviation.

droplet dynamics are very different. Various characteristic evaporation delays τv have
been considered: (1) τv = 0.5τ0, (2) τ0, (3) 2τ0. Configuration labels are summarized
in table 1 as well.

The evolution of Z/Zs is plotted in figure 11(a) for cases A1, B1 and C1. It is
clear from this figure that the most segregated case (B1, unity Stokes number) takes
the longest time to evaporate although a first-order estimation (obtained from the
tangent of the curve at t/τ0 = 0) would give the same results for the three cases.
Note that both configurations A1 and C1 start with exactly the same evolution of
the mean mixture fraction; the initial droplet dispersion level being the same in both
cases, the evaporation rate is similar at first and only a small discrepancy, which
will be explained later, appears when t/τ0 = 0.2. No matter what the Stokes number
of the droplets is, the mean mixture fraction evolution depends only on the initial
segregation level of the particles. If the segregation level is small enough to avoid the
creation of saturated pockets of fuel vapour, whatever the dynamics (or the Stokes
number) of the droplets is, the evolution of Z may be easily estimated by a classical
d-square law. On the other hand, if the segregation level and mass of liquid fuel are
high enough for the pocket of vapour to reach the saturation limit, the evolution
of Z is affected. Clusters containing a large number density of droplets are quickly
surrounded by a high level of vapour concentration. Consequently, the gaseous fuel
diffusion flux from the droplet surface to the surrounding gas is reduced because of
the saturation that strongly decreases the evaporation rate for each droplet embedded
in any cluster. Evaporation may even stop if the vapour concentration locally reaches
the saturation limit. Consequently, the droplets need more time to evaporate. Some of
them, generally the heaviest ones, may be ejected from the cluster by turbulent motion
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Figure 12. Droplet mean properties evolution, characteristic evaporation time 2τ0.
(a) droplet number fluctuations, (b) mean Stokes number.

to reach areas where vapour concentration is low enough for them to evaporate. On
the other hand, the smallest ones may be trapped in the cluster. In that case, the
driving mechanism of the evaporation is linked to the global diffusive flux of vapour
from the saturated cluster towards areas with low vapour concentration.

A very different behaviour may be observed in figure 11(b) where the evolution of
the standard deviation of the mixture fraction Z′ is plotted for cases A1, B1, C1. From
a general point of view, the global shape of the curves is the same: starting from
Z′/Zs = 0 when evaporation begins, the curves reach a maximum value long before
the characteristic evaporation delay (when t/τv ≈ 0.2). It is here that the dissipation
effects on the mixture fraction fluctuations become greater than the effects of the
evaporation. Consequently, the mixture fraction fluctuations decrease continuously.
Details of the competition between evaporation and dissipation may be found in
Reveillon & Vervisch (2000).

A more detailed analysis shows different local evolutions of the mixture fraction.
First, the most segregated spray generates the most fluctuating mixture fraction field
(case B1, St = 1.05). Droplets are accumulated in small clusters and when evaporation
starts, high levels of mixture fraction are obtained in small control volumes, leading to
a strong deviation Z′. Another important point to note is the evolution of the deviation
Z′ of case C1 that initially evolves like case A1 because of the initially similar droplet
segregation level. However, it very quickly exceeds (more than 30%) the maximum
value of Z′

A1 before joining, almost exactly, the curve Z′
B1 corresponding to the highly

segregated case. This behaviour, very different from that observed previously in the
evolution of Z, is due to the decrease of the mean Stokes number of the spray that
leads to a very quick segregation of the evaporating droplets of case C1. On the other
hand, there is no change in segregation for case A1 (St = 0.17) as the Stokes number
becomes smaller and smaller.

This interpretation is confirmed in figure 12 where the evolution of the droplet
segregation parameter ξ ′ and the droplets’ mean Stokes number is plotted for cases
A3, B3, C3 (τv = 2τ0), which shows this behaviour more clearly. The evolution of
spray segregation represented by the standard deviation of the droplet density ξ ′

is shown in figure 12(a). The general trend of cases B and A is a decrease of the
segregation because of the decrease of the corresponding Stokes number that may be
seen in figure 12(b). The turbulent micro-mixing becomes more and more effective,
leading to a less segregated spray. When the Stokes number is initially greater than
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Figure 13. Droplet mean surface evolution. Symbols: droplet evaporation
in a quiescent atmosphere.

unity (case C) the segregation first increases before following the general decay. The
initial elevation of the segregation level corresponds to an evolution of the droplet
dynamics to a level that is more efficient (unity Stokes number) in creating clusters
and, therefore, increases ξ ′ momentarily. This modification of the evaporating droplet
dynamics has a direct impact on the mixture fraction evolution as seen in figure 11(b).
It also explains the small discrepancy between cases A and C in the evolution of
Z (figure 11a) underlined previously; the temporary formation of clusters in case C
leads to slightly more saturated clouds of fuel vapour. Consequently, it delays the
evaporation process.

The evolution of the mean droplet surface divided by its initial value is shown
in figure 13 for various Stokes numbers and various evaporation delays. Additional
curves, represented by circles, show the mean droplet surface evolution that would be
obtained if there were no preferential segregation (homogeneous droplet distribution).
This curve may be obtained analytically from equations (2.17) and (2.18) where YF

is replaced by the mean mass fraction of fuel increasing in the domain. This model
has been used to determine the characteristic evaporation delay τv . Figure 13(a)
demonstrates the dramatic effect of the segregation of the dispersed phase on the
evaporation process. Two distinct stages may be observed. First, when evaporation
starts, far from the saturation limit, the decrease in the mean droplet surface area
calculated from the DNS is similar to the results obtained with the analytical model
that neglects the segregation phenomena. Then, depending on the Stokes number (i.e.
on the droplet segregation level), a second evaporating stage may be observed with a
slower rate. This behaviour is confirmed by figure 13(b) where the surface evolution
has been plotted for a given Stokes number (St = 0.17) and various evaporation
delays.

The evaporation scenario is shown in figure 14 and may be summarized as follows:
(1) Initially the evaporation is very quick since no vapour concentration prevents
it. (2) Soon a cluster that contains a high density of droplets reaches a vapour
concentration close to saturation. Consequently, the evaporation rate of the droplets
inside the cluster is strongly diminished, if not stopped. Then, two routes are possible.
(3a) The lightest droplets are not able to leave the saturated area because of their
lack of inertia. Their evaporation rate is thus strongly related to the diffusion rate
of the pocket of vapour toward the fresh gases. In this case, all the droplets inside a
cluster could be considered as a single entity, which mimics the evaporation law for a
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Figure 14. Sketch of the evaporation process. Labels (1)–(3) are described in the text.
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single droplet. (3b) Turbulent motion contributes to dispersing the heaviest droplets.
Then, they may reach non-saturated areas to finish their evaporation process.

4.3. Mixture fraction PDF

There are various ways to describe the statistics of the vapour mass fraction. In the
preceding section, the evolution of the first two moments of Z was plotted in figure 11
to characterize the direct impact of the droplet segregation on the corresponding
mixture fraction fluctuations. A thorough statistical analysis can be carried out by
detailing the transformation of P (Z/Zs), the probability density function (PDF) of
the mixture fraction variable Z normalized by the saturation value Zs . By doing so,
the phase space is bounded between 0 and 1, facilitating the analysis. General time
evolutions of Z/Zs are plotted in figure 15 for the three reference Stokes numbers:
St = 0.17, St = 1.05 and St = 5.6. Starting from a Dirac function (not represented)
at Z/Zs = 0 when evaporation begins, the PDF evolves, with a bell-shaped curve,
towards another Dirac function corresponding to the final mean mixture fraction in
the volume.

More details may be found in figure 16 where snapshots of the PDF shapes are
plotted for three different times. Plot (a) shows the three PDFs when t = 0.025τ0.
Although the mean mixture fraction is small, it is clear that the curves corresponding
to St = 0.17 and St = 5.6 are similar for short times. This is a remarkable property.
We already knew, from figure 8(a) that the segregation parameter ξ ′, and therefore
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Figure 16. PDF of Z for various Stokes numbers: (a) t = 0.025τ0, (b) t = 0.5τ0

and (c) t = 1.15τ0.

the mixture fraction variance Z′, were similar in the early stages of the evaporation
for St = 0.17 and St = 5.6. However, the corresponding cluster sizes (figure 10)
were different, possibly leading to different mixture fraction topologies. It appears
in figure 16(a) that the PDF shape is not strongly affected by the various cluster
sizes in the early stages of the evaporation process. Thus, not only are the first two
moments similar but also the moments greater than two. However, numerous models
are based on the first two moments of the mixture fraction variable and it is useful
to note that those models, often deduced from the analysis of the mixing of a purely
gaseous flow, may be used for two-phase flows if the evaporation source terms are
correctly accounted for.

Figures 16(b) and 16(c) confirm the general evolution seen in figure 11(b) when
the Stokes number of the heaviest droplets reaches the optimal segregation level
corresponding to St = 1. Consequently the PDF of case C1 relaxes toward the PDF
of case B1. At an intermediate stage (centre plot of figure 16), both St = 0.17 and
St = 5.6 PDFs are still centred around a similar mean value but their shapes are no
longer alike. The difference between the shapes is considerable and it is clear that
combustion models based on such a PDF would give contrasting results. The last
point to be noticed in figure 16(b) is that, apart from case St = 0.17, the PDFs are not
symmetrical around the mean. Cases St = 0.17 and St = 5.6 correspond to dispersing
droplets that can be found outside the pockets of vapour generated around droplet
clusters because of turbulent micro-mixing or ballistic effects. This usual behaviour
leads to an increased probability of finding small mixture fraction levels. At this stage
it is difficult to determine if combustion would be strongly affected by this result.
However, if that were the case, it would be necessary to take into account the lack in
symmetry of the PDF in the models.

4.4. Spatial distribution of the mixture fraction field

The last part of this work is a study of the parallel evolution of both the spray
segregation and the mixture fraction field during the evaporation process. As detailed
above, among the various ways to describe this field we selected a spectral formulation
that may be used for both dispersed and gaseous phases.

Stationary spectra of the liquid density fluctuations ξ ′ are plotted in figure 17 for
the three standard Stokes numbers St = 0.17, St = 1.05 and St = 5.6, along with
that of the turbulent velocity field. A discussion of the energy levels of these spectra
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Figure 17. Variance normalized stationary spectra of ξ fluctuations when non-evaporating
spray is in equilibrium. Symbols: carrier-phase kinetic energy spectrum (open circles: forced
range, filled symbols: freely evolving range); dashed line: St = 0.17; solid line: St = 1.05;
dot-dashed line: St = 5.6.

and their evolution is given conducted above through the analysis of the standard
deviation of ξ and Z, and the corresponding spectra have been plotted in figure 9.
Thus, to focus on the spectral and physical topologies of both fields, Eξ and EZ have
been normalized by the variance of the field so that the integral of all the spectra
presented is unity. Moreover, the wavenumber direction κ is normalized by k0, the
reference wavenumber of the turbulent velocity field corresponding to the frequency
of the most energetic structures.

Before evaporation starts, the normalized shapes of the Eξ spectra (figure 17)
corresponding to configurations St = 0.17 and St = 1.05 are very similar, with a peak
of energy centred in a frequency range three to four times greater than that of the
turbulence. When St = 5.6, the low-frequency spectrum shape is different from the
other two and very close to the shape of the velocity energy. The heavy droplets are
mainly influenced by the large turbulent structures of the flow. On the other hand,
the three spectra have high energy rates for the high frequency corresponding to the
sampling of isolated droplets or small clouds of droplets.

The time evolution of normalized spectra EZ (left) and Eξ (right) is plotted for two
different evaporation delays: τv = τ0/2 in figure 18 and τv = 2τ0 in figure 19 for three
different Stokes numbers St = 0.17, St = 1.05 and St = 5.6 (from top to bottom).
In each figure, several spectra are drawn: curves with square symbols represent the
initial spectra corresponding to the beginning of the evaporation. Then the spectra
(thin black curves) evolve towards the spectrum with circle symbols corresponding to
the characteristic evaporation delay. Spectra evolving from this time are represented
with grey lines.

Several general conclusions may be drawn from these figures. First, the time
evolutions of all EZ spectra clearly follow an identical path whatever the droplet’s
Stokes number and evaporation delay. When evaporation starts, the initial normalized
mixture fraction spectra EZ have exactly the same shape as the corresponding Eξ

spectra. However, diffusion and turbulent micro-mixing affect the evolution of EZ

whereas the modification of the droplet dynamics and evaporation changes Eξ . Small
structures in the mixture fraction due to isolated droplets or small clusters disappear
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Figure 18. Time evolution of EZ (left) and Eξ (right) normalized spectra, τv = 0.5τ0. Straight

line: k−5/3 range. Bold lines: evaporation starts, less-bold lines: time < τv , symbols: time = τv ,
grey lines: time � τv . (a, b) St = 0.17, (c, d) St = 1.05, (e, f ) St = 5.6.

very quickly and there is a shift of the peak of energy towards the low-frequency range.
In other words, the characteristic size of the vapour pockets becomes progressively
larger. This is a natural behaviour due to the disappearance of inhomogeneities
because of turbulent mixing of the gas phase. Another contribution may be the
stochastic behaviour of the droplets or small clusters leading to a vapour wake larger
than the effective cluster size. During this process an inertial range appears on the
mixture fraction spectra (figures 18 and 19, left). In a logarithmic representation,
this range seems to converge towards the k−5/3 limit that is shown on the figures.
Particle density spectra are not affected by the appearance of an inertial range; this
is a characteristic behaviour of turbulent gaseous mixing. As it has been described
by Mydlarski & Warhaft (1998), this inertial range may be observed for all Reynolds
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Figure 19. As figure 18 but for τv = 2τ0.

numbers unlike the velocity spectrum that needs high values of Re. From this point
of view, the spray evaporation has a weak effect on the shape of the scalar spectra.
It appears that the time required to develop an inertial range does not depend on the
evaporation delay. In fact, the effects of turbulence on the shapes of the EZ spectra
are more prevalent than the impact of the evaporation of the remaining droplets.
Thus, in the configurations considered, the evaporation source terms mainly affect
the energy level of the spectrum but not its shape, except in the early stages of
the evaporation process where there exists a Stokes dependence of the length scale
(similar when St = 0.17 and St = 1.05 and twice as large when St = 5.6). In that
short period of time, the mixture fraction spectrum matches that of the clusters of
droplets. This is confirmed by figures 20(a) and 21(a) where the characteristic length
scales lZ of the mixture fraction follow almost the same evolution whatever the
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Figure 21. As figure 20 but when τv = 2τ0.

evaporation delays or the Stokes number. Combustion is thus susceptible to being
affected directly by the size of the clusters only if the ignition delays are short;
otherwise, the main driving mechanisms will be the turbulent micro-mixing and the
mean evaporation rate. Of course, it must not be forgotten that clusters of droplets
may affect combustion processes in other ways, in particular through the momentum
(drag forces) or temperature (droplet evaporation) coupling.

The evolution of the Eξ spectra depends strongly on the droplet’s Stokes number
and the evaporation delay. As seen in figures 18 and 19, various behaviours may
be considered. If τv = τ0/2 and t < τv (figure 18), the spectrum shapes remain
almost stationary. Then, in a second phase, there is a shift of the maximum of the
spectra towards the high-frequency modes, implying a decrease of the characteristic
size of the cluster of droplets because of the evaporation. This shift is more or less
pronounced depending on the initial Stokes number of the droplet. This behaviour
is shown graphically in figure 20(b) where lZ is plotted for St = 0.17, St = 1.05 and
St = 5.6 for τv = τ0/2. The cluster size remains almost the same during the main
evaporation process. But as soon as droplets begin to disappear, cluster sizes decay
naturally. Note the quick evolution of the St = 5.6 case.

The Eξ spectra of case τv = 2τ0 (figure 19) have a very different evolution. Indeed,
instead of keeping the same global shape and shifting towards high frequencies, a
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Figure 22. Spray density field when t = τv and St = 5.6. The remaining droplets are
embedded in vapour pockets. (a) τv = 2τ0, (b) τv = τ0/2.

bimodal shape appears during evaporation. While the high-frequency range always
sustains a high energy level, the energy of the intermediate-frequency range begins to
decay strongly while the low-frequency energy increases. As soon as the characteristic
evaporation delay is reached, low-frequency energy decays and the few remaining
droplets concentrate the density fluctuations in the high-frequency modes, as might be
expected. Considering these spectrum shapes, it appears that, for a while, two extreme
characteristic length scales may be defined. This leads to a sudden modification
of lξ (figure 21b) because each spectrum peak swaps from high frequency to low
frequency. The specific appearance of a double length scale is confirmed in figure 22(a)
where thin-fingered structures (small length scale) are emerging from clusters of
droplets (large length scale). On the other hand, in figure 22(b) only one prevalent
structure may be detected as confirmed by figure 18.
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Z Z′ P (Z) EZ Eξ

(t ≈ 0) − − − + +
(0 < t � τv) + + + + → − (1) −
(τv < t) − + − (2) − +

Table 2. List of the effects due to preferential segregation during the evaporation process. t is
the simulation time to be compared with the evaporation delay τv . + denotes a major effect
while − denotes a minor impact. (1) turbulence effects, (2) classical Gaussian shape.

5. Conclusion
Statistically stationary turbulence is used as carrier phase to study spray dispersion

and evaporation using a spectral DNS solver where a semi-deterministic forcing
scheme has been implemented. The evolution of the dispersed liquid phase is modelled
using a classical Lagrangian description. A one-way coupling is applied between the
Eulerian and Lagrangian solvers, except for the description of the vapour mass
fraction evolution, which uses a two-way coupling. Consequently, turbulent flow
characteristics remain constant while the dispersion of various sprays is studied. The
sole effect of the droplet dynamics has thus been isolated and characterized for
various sprays by prescribing Stokes numbers ranging between 0.025 and 11. The
liquid density ξ is introduced to characterize droplet segregation properties. This
quantity gives results similar to classical Lagrangian methods (Fessler et al. 1994) but
deeper analysis is possible, in spectral space for example.

First, the dispersion of non-evaporating droplets is considered. It shows the
formation of clusters of particles whose size and dynamics are strongly dependent on
the Stokes number. This segregation effect is the result of three competing phenomena:
the natural ejection of the droplets from the high-vorticity areas, the turbulent micro-
mixing that affects the smallest droplets, and the ballistic effects, associated to the
heaviest ones. In the second stage, droplet evaporation considered. This consequences
of preferential segregation on the whole evaporation process are studied in detail from
both the gaseous and liquid points of view. Several conclusions have been drawn from
this study and are summarized in table 2.

Overall, the presence of droplet clusters due to preferential segregation is important
for global variables such as the mean vapour mass fraction Z and its standard
deviation Z′, which are the key parameters of any combustion model. Hence the
presence and properties of clusters must be accounted for. However, it appears
that knowing the mean liquid density and its standard deviation is not sufficient to
characterize the spray dispersion. An additional parameter, directly linked to droplet
dynamics, such as the Stokes number, is thus necessary. Independently of the initial
Stokes number, three stages can be defined for droplet evaporation:

(a) Single-droplet evaporation mode: far from saturation, there is no influence
of clusters and an almost d-square law whose rate depends on isolated droplet
characteristics is observed.

(b) Cluster evaporation mode: droplets are embedded in vapour pocket close to
saturation. The evaporation rate strongly diminishes. It depends on the ability of
the droplets to leave the saturated cloud (ballistic effect, high Stokes number) and
on the gaseous diffusion flux from vapour saturated pockets towards low vapour
concentration areas.
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(c) Gaseous mode: the droplets have vanished or their number is no longer large
enough to influence the gas-phase evolution. The classical turbulent mixing controls
the vapour evolution.

During droplet evaporation, the mixture fraction field was also scrutinized. First,
an analysis of the evolution of the PDF of the mixture fraction was carried out
for three reference Stokes numbers. For very short times, the PDF shapes are not
significantly different, and this corresponds to the single-droplet evaporation mode.
However, as soon as vapour pockets reach the saturation level, PDFs are strongly
affected. If ignition should occur at this moment, very different flames would be
observed according to the droplet dynamics. Then, when the evaporation rates become
negligible (gaseous mode) turbulent micro-mixing prevails and the mixture fraction
PDFs relax towards a classical Gaussian shape. Finally, a joint spectral analysis of
both the mixture fraction and liquid density spectra showed the strong impact of
the cluster formation on the mixture fraction field, especially in the early stages of
the evaporation process. However, turbulent mixing and gaseous diffusion prevail
very quickly and vapour spectra relax towards a similar shape independently of their
initial Stokes number. Note that the global energy level remains strongly affected by
the liquid density spatial distribution. On the other hand, the liquid density spectra
are strongly influenced by the droplet dynamics and differences still persist up to
the end of the evaporation process. However, because the evaporation rate becomes
negligible, the liquid density distribution no longer affects the mixture fraction field.

CPU time was provided by IDRIS-CNRS (Institut du Développement et des
Ressources en Informatique Scientifique). The authors would like to thank Dilys
Moscato for a thorough reading and suggestions, which have improved the paper.
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